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Abstract. In this paper we study Peierls instabilities for a half-filled two-dimensional tight-binding model
with nearest-neighbour hopping t and next nearest-neighbour hopping t′ at zero and finite temperatures.
Two dimerization patterns corresponding to the same phonon vector (π, π) are considered to be realizations
of Peierls states. The effect of imperfect nesting introduced by t′ on the Peierls instability, the properties
of the dimerized ground state, as well as the competition between two dimerized states for each t′ and
temperature T , are investigated. It is found: (i). The Peierls instability will be frustrated by t′ for each
of the dimerized states. The Peierls transition itself, as well as its suppression by t′, may be of second- or
first-order. (ii). When the two dimerized states are considered jointly, one of them will dominate the other
depending on parameters t′ and T . Two successive Peierls transitions, that is, the system passing from the
uniform state to one dimerized state and then to the other may take place with decrease of temperature.
Implications of our results to real materials are discussed.

PACS. 71.45.Lr Charge-density-wave systems – 63.20.Kr Phonon-electron and phonon-phonon
interactions

1 Introduction

The Peierls instability, associated with bond-order or
charge-density waves, is an important phenomenon in low
dimensional materials driven by electron-phonon interac-
tion [1]. The occurance of such an instability is directly
relevant to the nesting property of the Fermi surface (FS)
in the normal high temperature state of materials. It
has been observed in quasi-one dimensional (1D) met-
als such as polyacetylene (CH)x, blue bronzes A0.3MoO3

(A=K, Rb, Tl) [2], as well as quasi-two dimensional (2D)
materials such as purple bronzes AMo6O17 (A=Na, K,
Tl) [2–5] and a series of monophosphate tungsten bronzes
(PO2)4(WO3)2m with 4 ≤ m ≤ 14 [6–9].

Theoretically the description for the Peierls instability
was mainly developed for 1D metals, and relatively few in-
vestigations are concerned with 2D systems [10–15]. Actu-
ally the 2D study of the Peierls instability is not straight-
forward because of the more complex FS structure as well
as richer distortion patterns. For example, in Figure 1 we
have shown two possible dimerization patterns for the lat-
tice distortion and the corresponding bond hopping in two
dimensions. Both of them correspond to phonons with
wave vector (π, π), and their difference is that for pat-
tern (a) the dimerization is in both directions, while it is
only in one direction for pattern (b). The simplest model
to discuss the Peierls instability in two dimensions is a
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square lattice tight-binding model with nearest-neighbour
(n.n.) hopping t, i.e., the 2D version of the well-known
Su-Schrieffer-Heeger (SSH) model [16]. It was originally
studied by several authors in connection to high-Tc su-
perconductors [10,11]. At half-filling the FS is perfectly
nested with nesting vector Q = (π, π) so that arbitrarily
small electron-lattice coupling [15] will induce a Peierls
instability into any one of the dimerized states shown in
Figure 1 (if quantum lattice fluctuations are ignored).

The above situation, i.e., perfect nesting of FS is, how-
ever, special because it may be easily broken for example,
by introduction of next nearest-neighbour (n.n.n.) hop-
ping t′. Actually for real materials, e.g., quasi-2D high-
Tc superconductors n.n.n. hopping was found to be im-
portant. Also for those quasi-2D materials which show a
Peierls instability, perfect nesting of their Fermi surfaces
is not satisfied. It is reasonable to adopt a tight-binding
model with n.n. and n.n.n. hopping to simulate an essen-
tial property of them: the relevance of nesting. Then a
question is naturally asked: how is the Peierls instability
affected by t′?

It is the purpose of this paper to make a systematical
study of Peierls instabilities for a 2D t-t′ model, where
the nesting property of the FS can be modulated. In con-
trast, the corresponding problem in the 1D case might
be less attractive because the FS is always composed of
two points and perfectly nested as long as t′/t < 0.5, and
then at least in this region t′ has no effect on Peierls in-
stability [17]. The 2D problem at zero temperature was
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Fig. 1. The lattice distortion patterns (a) and (b). In the figure
a thick solid line corresponds to a strong bond with hopping
integral t(1+δ), a dashed line corresponds to a weak bond with
hopping integral t(1− δ), and a thin solid line corresponds to
a normal bond with hopping integral t. Both patterns corre-
spond to phonons with wave vector (π, π). The dimerization is
along two axes for pattern (a), while only along the x axis for
pattern (b).

addressed in an earlier work [15]. It was found that the
Peierls instability will be suppressed with increasing t′

for each of the two patterns (a) and (b), when they are
studied individually. Moreover, when they are considered
jointly, one of them was found to dominate the other or
reverse when t′ is less or greater than some critical value
t′ab, i.e., there exists a crossover between the two patterns
at t′ = t′ab. Further one may conjecture that the same be-
havior should also occur at finite temperatures, and most
probably the value t′ab will change with temperature. Then
an intriguing phenomenon may arise: at some t′, the two
dimerized states will dominate successively with change
of temperature so that double Peierls transitions (one is
between uniform state and dimerized state, the other is be-
tween two dimerized states) are expected to take place as
a function of temperature. Actually, two successive Peierls
transitions were observed in TlMo6O17 [5] and most of the
series (PO2)4(WO3)2m [6–9]. So it is interesting to extend
the previous work to finite temperatures to discover the
above phenomenon. At the same time, new findings at
ground state will be supplemented.

Before entering the details we implement a remark on
the lattice distortion. Recently, Ono and Hamano studied
the 2D Peierls instability numerically in the absence of t′
and found that a complex multi-mode distortion pattern
has a lower ground state energy than any one of the (π, π)
structure presented here [13]. As also described by the
authors themselves, however, such a distortion pattern is
not unique and may be infinitely degenerate. So it is dif-
ficult to extract an explicit pattern for real applications.
Moreover, no further confirmation on these new patterns
is present at the moment. Thus the question of the real lat-
tice distortion for the 2D Peierls system is still open even
in the case of t′ = 0. Under these circumstances we prefer
to adopt the two commonly assumed dimerization pat-
terns (a) and (b) as candidates of the Peierls state. These
two patterns comply with the nesting vector Q = (π, π)
and realize an unconditional Peierls instability at t′ = 0.
Similarly, one may also argue that for each t′ and tem-

perature there may exist a lattice distortion structure,
though perhaps extremely complicated, with the lowest
(free) energy. We have no intention to include all kinds of
lattice distortions, which is actually impossible in an ana-
lytical treatment on an infinite lattice. Instead, through-
out the work we constrain the lattice distortions to the
patterns (a) and (b) (although a discussion on a general-
ization to these two patterns is given in the last section),
and based on this, we intend to investigate the presence of
t′ after fully understanding the t′ = 0 case. This is a nat-
ural topic by physical consideration as illustrated in the
preceding paragraphs, which is helpful to understand the
2D Peierls instability itself as well as relevant materials
even if the assumed dimerized states (a) and (b) might be
not the lowest energy Peierls states.

2 Formulation

Our Hamiltonian represents a half filled 2D t − t′ model
including lattice displacements. It reads [15]:

H = −t
∑
i,j,σ

[1 + α(uxi,j − uxi+1,j)](c
†
i,j,σci+1,j,σ + h.c.)

−t
∑
i,j,σ

[1 + α(uyi,j − u
y
i,j+1)](c†i,j,σci,j+1,σ + h.c.)

−t′
∑
i,j,σ

(c†i,j,σci+1,j+1,σ + c†i,j,σci+1,j−1,σ + h.c.)

+
K

2

∑
i,j

[(uxi,j − uxi+1,j)
2 + (uyi,j − u

y
i,j+1)2] . (1)

All above notations are conventional: c†i,j,σ(ci,j,σ) is the
creation (annihilation) operator for an electron at site
(i, j) with spin σ (i denotes x coordinate and j denotes
y coordinate); ux/yi,j is the displacement component of site
(i, j) in x/y direction; t, t′ are n.n and n.n.n. hopping pa-
rameters and α is the electron-lattice coupling constant.
The last term above describes the lattice elastic poten-
tial energy with K the elastic constant. The phonons are
treated in adiabatic approximation.

The lattice distortion, as shown in Figure 1, may be
explicitly expressed as

uxi,j − uxi+1,j = (−1)i+ju, uyi,j − u
y
i,j+1 = (−1)i+ju

for pattern (a) and

uxi,j − uxi+1,j = (−1)i+ju, uyi,j − u
y
i,j+1 = 0

for pattern (b), where u is the amplitude of dimerization
which needs to be determined. Experimentally these two
patterns may be differentiated by high resolution X-ray
or neutron scattering. For convenience, two dimensionless
parameters are defined as follows: the dimerization am-
plitude δ = αu and the electron-lattice coupling constant
η = α2t/K.
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Fig. 2. The Fermi surfaces before dimerization (gray curve) and after dimerization (solid and dashed curves) for t′ = 0.15 for
both patterns. For pattern (a), the FS of the ‘+’ band (dashed curve) is formed just by the two pockets around (π/2,−π/2) and
(−π/2, π/2); while for pattern (b) it is formed by the four pockets. The ‘−’ band for each case has the large FS (solid curve)
with nearly the square shape, except for the cut corners. The square: |kx|+ |ky| = π is the reduced Brillouin zone (also the FS
in the case of t′ = δ = 0).

The Hamiltonian (1) may be easily diagonalized to give
the following electronic spectra in momentum space for
patterns (a) and (b), respectively,

ε±k,a = −4t′ cos kx cos ky

±2
√

(cos kx + cos ky)2 + δ2(sin kx + sin ky)2 ,

ε±k,b = −4t′ cos kx cos ky

±2
√

(cos kx + cos ky)2 + δ2 sin2 kx . (2)

Before continuing we check the symmetries of the
above spectra. It is easy to see that the spectra in both
cases are invariant under the same operation: kx → kx±π
and simultaneously ky → ky ± π. In addition, the spec-
tra ε±k,a have reflection symmetry: kx → −kx and si-
multaneously ky → −ky, as well as exchange symmetry:
kx ↔ ky; while the ε±k,b have only the reflection symmetry:
kx → −kx or ky → −ky, or both.

The electronic grand canonical partition function Ξ
may be written as:

lnΞ = 2
∑
k,ν

ln[1 + e−β(ενk−µ)] (3)

with β = 1/kBT (T : temperature) and ν = ±: band in-
dex. The factor 2 in front of the summation includes spin
degeneracy. The chemical potential µ is adjusted to yield
the right filling, i.e., Ne = 1

β
∂
∂µ lnΞ. Ne is the total elec-

tron number, equal to the total number of lattice sites N
at half-filling.

The required optimal dimerization parameter δ∗ is de-
termined by minimization of the total free energy which
is given by

F = − 1
β

lnΞ +Neµ+EL. (4)

Here EL denotes the lattice elastic energy which is, in unit
of t, Nδ2/η for pattern (a) and Nδ2/(2η) for pattern (b).

Note that EL for (a) is twice of that for (b) under the
same δ.

Throughout the paper we take the Bolzmann constant
kB = 1 and the n.n. hopping integral t as the energy unit.
The parameter η is fixed at a typical value 0.5. The vari-
ation of η should not change the results qualitatively, as
has been seen at ground state in the earlier work [15]. Also
notice that the Hamiltonian with −t′ may be mapped
onto that with t′ at half-filling through the transforma-
tion: ci,j,σ → (−1)i+jc†i,j,σ, so we only consider t′ > 0 in
the following.

3 Results at T = 0

The effects of t′ on the Peierls instability were carefully
studied at ground state in reference [15], and the main re-
sults are summarized here. For each of the two patterns, it
was found that t′ tends to suppress the Peierls instability.
But the details in both cases are different: for (a) the sup-
pression is of first-order while for (b) it is of second-order.
The critical values of t′ for suppression in both cases are
close but slightly different. More interestingly, a crossover
between the two dimerized states themselves may take
place with change of t′.

After a brief presentation of the above results, our
main attention in this section is paid to other useful
properties in the ground state, which were not discov-
ered previously. First let us have a look at the variation
of the FS before and after dimerization. This helps thor-
oughly understand the impact of the FS structure on the
Peierls instability. We take t′ = 0.15 for example and
plot the Fermi surfaces in Figure 2 for both patterns (also
cf. the plots of electronic spectra shown later). In this fig-
ure, the FS before dimerization is shown by the gray curve
in the original Brillouin zone, while after dimerization the
Fermi surfaces for the ‘−’ and ‘+’ bands are shown in the
reduced Brillouin zone by the solid and dashed curves, re-
spectively. Please note by the way the differences of the
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Fig. 3. The electronic spectra in the dimerized states for several t′ values for both patterns. The solid and dotted curves in
each panel represent energy bands ‘−’ and ‘+’, respectively, and the dashed horizontal line shows the chemical potential. Note
that the two bands in the region (−π, 0)-(0, π) are identical for pattern (a).

FS structures for both patterns which are controlled by
the symmetries of the respective spectra addressed above.
From Figure 2 a common observation in both patterns is
that after dimerization there are a few electrons resting in
the ‘+’ band, whose energy levels are lifted as seen from
equation (2). That is, the energies for this small fraction
of electrons are increased by dimerization, leading to a
partial cancellation of the energy gain acquired by most
of electrons dropping into the ‘−’ band. This situation is
in contrast to that for t′ = 0 where the original FS is per-
fectly nested so that all electrons drop into the ‘−’ band
with each energy level reduced (at least not raised) by
dimerization. Therefore, one may see that the imperfect
nesting of the original FS induced by t′ is unfavorable to
gain the electronic energy to the largest extend. And once
such a gain is not sufficient to compensate the cost of the
elastic energy, the Peierls instability will be prohibited.

Another observation we want to illustrate is that the
dimerized state (a) or (b), due to the Peierls transition, is
metallic or semi-metallic in two dimensions (even for t′ =
0) rather than insulating as in one dimension. Actually
there is no finite gap opened by the dimerization in any
case. To more clearly see this point we have plotted the
electronic spectra in the dimerized states for several t′
values in Figure 3, as well as their corresponding density
of states (DOS), i.e., 1

N

∑
k,ν δ(ε − ενk) in Figure 4. The

two bands are found to touch or overlap for each t′ and for
each pattern, as also seen from DOS where no gap appears
in each case. We point out that the Peierls instability,
when occuring in those real quasi-2D materials, is always
associated with a metal-metal transition [6].

At this stage, it is worthwhile to mention several points
seen from Figure 3: (i) The two bands in the region
(−π, 0)-(0, π) are identical for pattern (a). (Thus they
are always overlapped.) (ii) The spectra along the path
(−π, 0)-(0, π)-(π, 0) are symmetric about point (0, π) for
pattern (b), while it is not for pattern (a). This can be also
seen from Figure 2. (iii) For pattern (b), the two bands
display no overlap for t′ = 0.1 (in contrast to the case
for t′ = 0.15). Then the ground state energy is simply a
summation for the ‘−’ band, which becomes t′-irrelevant.
So the optimal parameter δ∗ should take the same value
as that for t′ = 0, as discussed in the earlier work [15].

At last, we point out that the DOS in each dimerized
state for finite t′ exhibits the feature of asymmetric double
peaks. This could provide characteristic information on
some measurable properties like optical absorption in real
materials when available.

4 Peierls transitions at T > 0

We discuss finite temperature transitions in this section.
For clearness we first look at the results for the two cases
of pattern (a) and (b) separately, and then consider the
competition between them. The optimal dimerization pa-
rameters with change of temperature were calculated for
various values of t′. The results for pattern (a) are shown
in Figure 5 and those for pattern (b) in Figure 6. A no-
table common property seen from both figures is that the
Peierls transition temperature (denoted as T ap and T bp for
pattern (a) and (b), respectively) decreases with increase



Qingshan Yuan: A study of Peierls instabilities for a two-dimensional t-t′ model 285

−6.0 −4.0 −2.0 0.0 2.0 4.0 6.0
ε

0.0

0.1

0.2

0.3

0.4

0.5
0.0

0.1

0.2

0.3

0.4

0.5

D
O

S

0.0

0.1

0.2

0.3

−6.0 −4.0 −2.0 0.0 2.0 4.0 6.0
ε

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8
0.0

0.1

0.2

0.3

0.4

0.5

(a) (b)t’=0

t’=0.1

t’=0.15

t’=0

t’=0.1

t’=0.15

Fig. 4. The density of states (DOS) for each case corresponding to Figure 3. The dashed vertical line in each panel shows the
chemical potential.
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Fig. 5. The optimal dimerization parameter δ∗ as a func-
tion of temperature T under various values of t′ for pat-
tern (a). The curves from right to left correspond to t′ =
0, 0.12, 0.16, 0.168, 0.17, 0.171, 0.172, respectively.

of t′. This just means that the n.n.n. hopping t′ is un-
favorable to the Peierls instability to occur, which is ex-
pected and consistent with the results at ground state. It
deserves to be pointed out that the lowering of the transi-
tion temperature Tp with increasing t′ is consistent with
the experimental findings in the bronzes (PO2)4(WO3)2m,
where Tp was found to increase with m because of better
nesting properties [8]. Then we continue to look at the
types of transitions in both cases. For pattern (b), the
optimal dimerization parameter δ∗ goes to zero smoothly
with increase of T for each t′, i.e., the Peierls transition
is always of second-order. However, the type of transition
is variant for pattern (a). It is found that for most of t′
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∆
*

Fig. 6. The same as Figure 5 for pattern (b). The curves from
right to left correspond to t′ = 0, 0.1, 0.12, 0.15, 0.16, 0.168,
0.17, respectively.

values the transition is of second-order, while when t′ is
larger than about 0.17 it becomes of first-order. The ex-
planation for the first-order here is similar to that for the
first-order suppression by t′ at T = 0, which was presented
in reference [15].

To see the competition between the two dimerization
patterns, one needs to compare the free energies F ∗ for
both patterns at their respective optimal dimerization val-
ues for each t′ and T . In the following we choose several
t′ values 0, 0.14, 0.168, 0.17 to show all different kinds
of results, see Figures 7–10. In each figure the optimal
dimerization parameters and their corresponding free en-
ergies (per site) with change of temperature are compared
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Fig. 7. The optimal values δ∗ (upper panel) and the corre-
sponding free energies F ∗ (lower panel) as a function of T for
t′ = 0. The dashed lines are for pattern (a) and the solid lines
are for pattern (b).

for both patterns. We will discuss them in detail in the
following.

For the cases of t′ = 0, 0.14, 0.168, it is always found
that the transition temperatures for both patterns are
identical, i.e., T ap = T bp = Tp, but the comparative results
on free energies are different. For t′ = 0 the free energy for
pattern (b) F ∗b is always lower than that for pattern (a)
F ∗a in the whole temperature region T < Tp (see Fig. 7),
which means that the dimerized state with pattern (b)
is always preferred; while for t′ = 0.168 the result is ex-
actly the reverse (see Fig. 9). The most interesting case
is that for the intermediate t′ = 0.14, see Figure 8. To
more clearly compare the magnitudes of F ∗a and F ∗b , we
have plotted their difference ∆F ∗ = F ∗b − F ∗a as a func-
tion of temperature in the lowest panel, which shows that
F ∗b is lower than F ∗a in the intermediate temperature re-
gion and then becomes higher for low temperatures. Note
that the absolute numerical error for the free energy in
our calculations is less than 10−8, so the minor difference
∆F ∗ is not an artifact. Therefore, in this case the tran-
sitions with decreasing temperature may be described as
follows: at some critical temperature T 1

c the system goes
through a Peierls instability into the dimerized state (b).
When temperature continues to decrease down to another
critical value T 2

c the system will turn from the dimerized
state (b) into (a). That is to say, in the whole tempera-
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Fig. 8. Similar to Figure 7 but with an additional plot ∆F ∗ =
F ∗b − F ∗a vs. T , for t′ = 0.14.
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Fig. 9. The same as Figure 7 but for t′ = 0.168.

ture region two successive Peierls transitions take place,
as expected in the Introduction.

In addition, for the case of t′ = 0.17, the transition
temperature T ap becomes different from T bp and the former
is larger, see Figure 10. In addition, the free energy F ∗a
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Fig. 10. The same as Figure 7 but for t′ = 0.17.
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Fig. 11. The phase diagram for different stable states in the
parameter space of t′ and T . U, D1, D2 represent the uniform
state, dimerized state with pattern (a), dimerized state with
pattern (b), respectively. The solid and dotted lines are the
phase boundaries between U and D1, and D2, respectively,
when the two dimerization patterns are considered separately.
Note that they are identical for most values of t′. The dashed
line differentiates the stable state between D1 and D2. In the
narrow area between the solid and dotted line only the D1 state
survives.

is always lower than F ∗b . Thus the pattern (a) is always
dominant once T < T ap .

With the known results for several typical t′ values,
we now construct the phase diagram for different stable
states in the full parameter space of t′ and T . The re-
sult is presented in Figure 11, in which most of the above
results have been summarized. From Figure 11 the tran-
sition temperatures T ap (solid line) and T bp (dotted line)
with change of t′, as well as the competition between two
dimerization patterns are clearly seen. Note that the solid

and dotted lines are identical for most values of t′, and be-
come separate only for a narrow region with large t′. The
most exciting result seen from Figure 11 is that the dou-
ble Peierls transitions, i.e., the system passing the states
U→D2→D1 with decrease of temperature, may take place
for t′ in the region with approximately 0.137 < t′ < 0.16.

5 Discussion and conclusion

In the previous sections, extensive results about the
Peierls instability, including the rich phase diagram in the
parameter space of t′ and T have been discovered. Now
we discuss the possible implications of these results to real
materials. Although our model may be too simplified when
fitting to real quasi-2D Peierls materials, the results ob-
tained are still instructive for the understanding of some
experimental findings. (Actually some of instructions have
already been presented in the suitable context above.) For
real materials, the n.n.n. hopping t′ is often indispens-
able, and moreover, it can be changed by some external
conditions, e.g., pressure. Depending on whether the ratio
t′/t is enhanced or reduced by the pressure, the Peierls
transition temperature is expected to decrease (and even
vanish) or increase by it. Experimentally both of possi-
bilities were observed in the real quasi-2D bronzes, see
reference [9] and references therein. Our results also sug-
gest that applying pressure (if leading to an enhancement
of t′/t) may prevent the materials from the Peierls insta-
bility, and then possibly help them enter into the com-
peting superconducting state. Interestingly for the bronze
Li0.9Mo6O17, it was found that the superconducting tran-
sition temperature is largely increased by pressure, asso-
ciated with a sharp decrease of the transition temperature
of a possible Peierls instability [18]. In particular, our re-
sults show two successive Peierls transitions with tempera-
ture, a phenomenon which was found in TlMo6O17 [5] and
(PO2)4(WO3)2m [6–9]. Essentially, the theoretical and ex-
perimental results are similar, i.e., they both originate
from the competition between two different lattice dis-
tortion patterns. Of course, the real situations are more
complicated mainly because of intricate lattice distortions.
Nevertheless, our work provides a good example in two di-
mensions to show double Peierls transitions at finite tem-
peratures. Note that, within the intrinsic limitations (i.e.,
adiabatic phonons and limited lattice distortion patterns),
all results presented here are exact in the thermodynamic
limit.

Coming back to the region of Figure 11 where succes-
sive transitions U→D2→D1 take place, we further discuss
an interesting issue stated as follows. In this figure, it is ob-
vious that the second transition D2→D1 is of first-order.
Are there some intermediate states which may smoothly
connect D2 and D1? Actually, as a more general dimer-
ization pattern, the lattice distortions may be assumed in
the way:

uxi,j − uxi+1,j = (−1)i+jux, uyi,j − u
y
i,j+1 = (−1)i+juy

with a ratio r = uy/ux ∈ [0, 1]. The patterns (a) and (b)
correspond to the two limiting cases: r = 1 and 0,
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respectively. If this generalization is included in the calcu-
lation, preliminary results give the following scenario with
decreasing temperature: first, the transition still happens
between the uniform state and the dimerized state (b)
(i.e., r = 0). This state persists for a range of T and then
begins to turn continuously into other dimerized states
with r > 0. Depending on the value of t′, the r = 1 state,
i.e., the dimerized state (a) may be quickly reached or
may not be reached until T = 0. Now, the second tran-
sition between D1 and other dimerized states becomes of
second-order. Detailed results need a more careful calcu-
lation.

Finally, we briefly discuss the effects of electron corre-
lations, e.g., the Hubbard on-site U at ground state. For
t′ = 0, it was found that the on-site Coulomb interaction
is unfavorable to dimerization in two dimensions as soon
as U is present [10,11,20]. This is because the on-site U
favors the appearance of antiferromagnetic (AF) order for
the 2D half-filled model, while the dimerization tends to
stabilize local spin singlets. Thus both, Peierls and AF in-
stabilities, will compete with each other in the presence
of finite η and U [20]. On the other hand, the hopping t′,
which breaks the perfect nesting, will frustrate the Peierls
instability as shown here and also the AF instability as
shown by several authors [19], when each of them is dis-
cussed individually. Then it surely has nontrivial effects
on the competition between these two instabilities when
they are considered jointly. As far as the Peierls instability
is concerned, it is argued that both t′ and U may cancel
in part their effects when acting simultaneously, although
each of them separately tends to suppress it. This topic
will be left for future investigation.

In conclusion, the Peierls instabilities for a half-filled
2D t-t′ model are thoroughly studied with consideration
of two dimerization patterns (a) and (b). The effect of
imperfect nesting introduced by t′ on the Peierls instabil-
ity, the properties of the dimerized ground state, as well
as the competition between two dimerized states are com-
pletely discussed. We have found that the n.n.n. hopping t′
will frustrate the Peierls instability for each of the dimer-
ized states when considered separately. Moreover, when
the two dimerized states are considered together, they will
compete to result in a rich phase diagram in the parameter
space of t′ and T . Prominently, double Peierls transitions,
that is, the system passing from the uniform state to one
dimerized state and then to the other may take place with
decrease of temperature.
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1. G. Grüner, Density Waves in Solids (Addison-Wesley,
Redwood City, 1994).

2. Physics and Chemistry of Low-Dimensional Inorganic
Conductors, edited by C. Schlenker, J. Dumas, M.
Greenblatt, S. van Smaalen, NATO ASI Series B: Physics
Vol. 354 (Plenum, New York, 1996).

3. J. Dumas, C. Schlenker, Int. J. Mod. Phys. B 7, 4045
(1993).

4. M.H. Whangbo, E. Canadell, P. Foury, J.P. Pouget, Sci-
ence 252, 96 (1991).

5. M.L. Tian, S. Yue, J. Shi, S.Y. Li, Y.H. Zhang, J. Phys.
Cond. Matt. 13, 311 (2001); X.K. Qin, J. Shi, H.Y. Gong,
M.L. Tian, J.Y. Wei, H. Chen, D.C. Tian, Phys. Rev. B
53, 15538 (1996); R. Xiong, Q.M. Xiao, J. Shi, H.L. Liu,
W.F. Tang, M.L. Tian, D.C. Tian, Mod. Phys. Lett. B 14,
345 (2000).

6. C. Schlenker, C. Hess, C. Le Touze, J. Dumas, J. Phys. I
France 6, 2061 (1996).

7. E. Wang, M. Greenblatt, I.E. Rachidi, E. Canadell, M.H.
Whangbo, S. Vadlamannati, Phys. Rev. B 39, 12969
(1989); S. Drouard, D. Groult, J. Dumas, R. Buder, C.
Schlenker, Eur. Phys. J. B 16, 593 (2000).

8. J. Dumas, C. Hess, C. Schlenker, G. Bonfait, E. Gomez
Marin, D. Groult, J. Marcus, Eur. Phys. J. B 14, 73 (2000);
U. Beierlein, C. Hess, C. Schlenker, J. Dumas, R. Buder,
D. Groult, E. Steep, D. Vignolles, G. Bonfait, Eur. Phys.
J. B 17, 215 (2000).

9. J. Beille, U. Beierlein, J. Dumas, C. Schlenker, D. Groult,
J. Phys. Cond. Matt. 13, 1517 (2001).

10. S. Tang, J.E. Hirsch, Phys. Rev. B 37, 9546 (1988); 39,
12327 (1989).

11. S. Mazumdar, Phys. Rev. B 36, 7190 (1987); 39, 12324
(1989).

12. S. Mazumdar, R.T. Clay, D.K. Campbell, Phys. Rev. B
62, 13400 (2000).

13. Y. Ono, T. Hamano, J. Phys. Soc. Jpn 69, 1769 (2000).
14. F. Lin, X.B. Chen, R.T. Fu, X. Sun, Y. Kawazoe, Phys.

Stat. Sol. (b) 206, 559 (1998).
15. Q. Yuan, T. Nunner, T. Kopp, Eur. Phys. J. B 22, 37

(2001).
16. A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.P. Su, Rev.

Mod. Phys. 60, 781 (1988).
17. Q.S. Yuan (unpublished).
18. C. Escribe-Filippini, J. Beille, M. Boujida, J. Marcus, C.

Schlenker, Physica C 162-164, 427 (1989).
19. See e.g., H.Q. Lin, J.E. Hirsch, Phys. Rev. B 35, 3359

(1987).
20. Q.S. Yuan, T. Kopp, cond-mat/0109435, Phys. Rev. B 65,

085102 (2002).


